# Microstructure and mechanical properties of $AI_2O_3$ - $Cr_2O_3$ - $ZrO_2$ composites

TADAHISA ARAHORI

Technical Research Laboratories, Sumitomo Metal Industries Ltd, 16 Sunayama, Hasaki, Ibaraki 314-02 Amagasaki 660, Japan

E. DOW WHITNEY

Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, 32611, USA

 $AI_2O_3$  is a popular ceramic and has been used widely in many applications and studied in many aspects. On the other hand, zirconia-toughened alumina (ZTA) is a desirable material for engineering ceramics because of its high hardness, high wear resistance and high toughness. In the present research,  $AI_2O_3-Cr_2O_3-ZrO_2$  composites were produced by hot-pressing in order to harden the  $AI_2O_3$  matrix in ZTA. Its microstructure and mechanical properties were studied by SEM, ESCA, XRD, Vickers hardness and bending strength test. It was found that addition of ZrO<sub>2</sub> inhibited the grain growth of  $AI_2O_3-Cr_2O_3$  and the grain growth of ZrO<sub>2</sub> proceeded with increasing amounts of ZrO<sub>2</sub> in the  $AI_2O_3-Cr_2O_3-ZrO_2$  composite. The formation of solid solution  $AI_2O_3-Cr_2O_3$  was also confirmed by XRD, and monoclinic ZrO<sub>2</sub> increased on addition of  $Cr_2O_3$ . Maximum hardness was at  $AI_2O_3-10$  wt%  $Cr_2O_3$  with 10 vol% ZrO<sub>2</sub> and a stress-induced transformation was confirmed on the fracture surface of the specimen after the bending test.

# 1. Introduction

It is well known that the monoclinic phase of  $ZrO_2$  is stable below 1200°C, the tetragonal phase is stable between 1200 and 2372°C, and the cubic phase is stable above 2372°C [1]. The transformation of monoclinic to tetragonal is reversible and is accompanied by a volume change. Therefore, cubic  $ZrO_2$  stabilized with CaO, MgO, Y<sub>2</sub>O<sub>3</sub> etc. has been used as refractories. However, since partially stabilized  $ZrO_2$  (PSZ), which partially consists of tetragonal phase and is very tough, was reported by Garvie *et al.* [2], it has become a desirable material for use as engineering ceramics.

Zirconia-toughened alumina (ZTA) is also a desirable material for engineering ceramics because of its high hardness, high wear resistance and high toughness. In ZTA, microstructure and mechanical properties have been studied by Lange and co-workers [3, 4] and Claussen [5] etc. Al<sub>2</sub>O<sub>3</sub> is a popular ceramic and has been used widely for many applications and studied in many aspects, especially the grain-size influence on the mechanical properties of the ceramic body, so that MgO, TiO<sub>2</sub>, Cr<sub>2</sub>O<sub>3</sub> are used as grain growth inhibitors in Al<sub>2</sub>O<sub>3</sub> ceramics. It has also been reported that Cr<sub>2</sub>O<sub>3</sub> produces a solid solution with Al<sub>2</sub>O<sub>3</sub> which improves the mechanical properties of the latter [6].

In the present research,  $Al_2O_3-Cr_2O_3-ZrO_2$  composites were produced in order to harden the  $Al_2O_3$ matrix in ZTA and the microstructure and mechanical properties of this composite were studied by scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), X-ray diffraction (XRD), Vickers hardness test and bending strength test.

# 2. Experimental details

# 2.1. Materials

Powdered materials were prepared from Al<sub>2</sub>O<sub>3</sub> (average particle diameter  $0.3 \mu$ m: Fisher, Pittsburgh) and Cr(NO<sub>3</sub>)<sub>3</sub> · 9H<sub>2</sub>O (Fisher, Pittsburgh) and ZrOCl<sub>2</sub> · 8H<sub>2</sub>O (Aldrich, Milwaukee). Al<sub>2</sub>O<sub>3</sub> powder and soluble Cr(NO<sub>3</sub>)<sub>3</sub> · 9H<sub>2</sub>O and ZrOCl<sub>2</sub> · 8H<sub>2</sub>O in water were mixed and precipitated with NaOH solution while stirring. The mixtures were filtered, washed with water, dried and then calcined and ground in a ball milling jar. Specimens of several compositions were hot-pressed in graphite dies in a nitrogen atmosphere at 1500° C for 2 h under a pressure of 20.7 MPa. Sintered specimens were ground and annealed at 1350° C.

# 2.2. Measurements

The microstructure of specimens was observed by optical microscopy and SEM. The states of aluminium, chromium and zirconium were analysed by ESCA (VG: ESCA 3MKII).

The crystal phases of  $ZrO_2$  were identified by XRD. It has already been shown that the sum of the integral intensity of monoclinic (1 1 1), (1 1 1) and tetragonal (1 1 1) and cubic (1 1 1) in  $ZrO_2$  is constant, and also that of tetragonal (004), (400) and cubic (400) is constant [7]. Miller *et al.* [8] gave equations for calculating the molecular ratio of monoclinic, tetragonal and cubic phase in  $ZrO_2$  by XRD. In the present research, the crystal phase ratio in  $ZrO_2$  was measured



Figure 1 Microstructure of a polished surface of  $Al_2O_3-Cr_2O_3-ZrO_2$  composites seen by optical microscopy. (a)  $Al_2O_3-5$  wt %  $Cr_2O_3$ , (b)  $Al_2O_3-10$  wt %  $Cr_2O_3$ , (c)  $(Al_2O_3-5$  wt %  $Cr_2O_3)-10$  vol %  $ZrO_2$ , (d)  $(Al_2O_3-10$  wt %  $Cr_2O_3)-10$  vol %  $ZrO_2$ .

by following the former method. On the other hand, the lattice constants of  $Al_2O_3$  were measured in order to investigate the  $Al_2O_3$ - $Cr_2O_3$  solid solution. In the measurement of lattice constants, the Nelson-Riley extrapolation function [9] and the method of least squares were employed and then *a* and *c* were calculated.

Hardness, fracture toughness and bending strength as mechanical properties were measured on  $Al_2O_3$ - $Cr_2O_3$ - $ZrO_2$  composites. Vickers hardness was measured and specimens were loaded at 10 kg for 15 sec. Fracture toughness was given by measuring the length of the cracks from the Vickers indentation and by using the following experimental equation [10],

$$K_{\rm IC}/H a^{1/2} = 0.203 (c/a)^{-3/2}$$
 (1)

where H is the Vickers hardness, a the length of the indentation and c the length of the crack. Strength was measured by three-point bending. The size of the specimen for this test was  $3 \text{ mm} \times 4 \text{ mm} \times 40 \text{ mm}$  and the span length was 30 mm.

#### 3. Results

The microstructure of a polished surface of  $Al_2O_3$ - $Cr_2O_3$ - $ZrO_2$  composites was observed by optical microscopy as shown in Fig. 1. In  $Al_2O_3$ - $Cr_2O_3$  composite, wedge-shaped crystals were observed and grains

grew with increasing  $Cr_2O_3$  content. On the other hand, the texture was very fine and homogeneous in the composition, including  $ZrO_2$ .

Fig. 2 shows scanning electron micrographs of  $Al_2O_3-Cr_2O_3-ZrO_2$  composites.  $ZrO_2$  particles were dispersed homogeneously in four-grain junctions of  $Al_2O_3$  particles in the specimen including 10 vol%  $ZrO_2$ . It is indicated that the fine  $ZrO_2$  particles were included in  $Al_2O_3$  grains on the grain growth of the  $Al_2O_3$  particle, and  $ZrO_2$  grains were included in the interface of  $Al_2O_3$  grains in the specimen including 25 vol%  $ZrO_2$ . Furthermore,  $Al_2O_3$  and  $ZrO_2$  grains grew greatly in 40 vol%  $ZrO_2$ . The average grain sizes of  $ZrO_2$  particles were 0.5  $\mu$ m in 10 vol%  $ZrO_2$ , 1.0  $\mu$ m in 25 vol%  $ZrO_2$  and 2.1  $\mu$ m in 40 vol%  $ZrO_2$ .

The results analysed by ESCA for  $Al_2O_3-Cr_2O_3-ZrO_2$  composite are given in Fig. 3. It was confirmed that aluminium is present as  $Al_2O_3$ , chromium as  $Cr_2O_3$  and zirconium as  $ZrO_2$  by analysing Al2P, Cr2P3/2, Zr3d, and sodium and nitride were not detected.

 $ZrO_2$  phases of hot-pressed  $Al_2O_3$ - $Cr_2O_3$ -10 vol% ZrO\_2 composites were identified by XRD. As cubic phase (400) was not detected clearly, it is supposed that these composites consist of monoclinic and tetragonal without the cubic phase in ZrO<sub>2</sub>. The monoclinic ratio calculated from monoclinic (111), (111) and



Figure 2 Scanning electron micrographs of (a)  $(Al_2O_3-10 \text{ wt }\% \text{ Cr}_2O_3)-10 \text{ vol }\% \text{ ZrO}_2$ , (b)  $(Al_2O_3-10 \text{ wt }\% \text{ Cr}_2O_3)-25 \text{ vol }\% \text{ ZrO}_2$ , (c)  $(Al_2O_3-10 \text{ wt }\% \text{ Cr}_2O_3)-40 \text{ vol }\% \text{ ZrO}_2$  composites.

tetragonal (111) is indicated in Fig. 4. It is obvious that the monoclinic phase increases with increasing amount of  $Cr_2O_3$ . Fig. 5 shows the changes in the lattice constants of  $Al_2O_3$  in  $Al_2O_3-Cr_2O_3-ZrO_2$  composite. The values of  $a_0$  and  $c_0$  increase with increasing amount of  $Cr_2O_3$ . This result indicates that  $Al_2O_3$  and  $Cr_2O_3$  formed a solid solution.

Fig. 6 shows the dependence of Vickers hardness on the  $Cr_2O_3$  content in  $Al_2O_3-Cr_2O_3-ZrO_2$  composite. The hardness was maximum at the composition  $Al_2O_3-$ 10 wt %  $Cr_2O_3$  in  $Al_2O_3-Cr_2O_3-$ 10 vol % ZrO<sub>2</sub> com-



Figure 3 ESCA patterns of  $(Al_2O_3-10 \text{ wt }\% \text{ Cr}_2O_3)-10 \text{ vol }\% \text{ ZrO}_2$  composite.

![](_page_2_Picture_6.jpeg)

![](_page_2_Picture_7.jpeg)

posites. Fracture toughness ( $K_{IC}$ ), measured by Vickers indentation in Al<sub>2</sub>O<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>-10 vol % ZrO<sub>2</sub> composites, is indicated in Fig. 7: the fracture toughness increased with increasing amount of Cr<sub>2</sub>O<sub>3</sub> and saturated at the composition Al<sub>2</sub>O<sub>3</sub>-10 wt % Cr<sub>2</sub>O<sub>3</sub> in Al<sub>2</sub>O<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>-10 vol % ZrO<sub>2</sub> composites. In addition, the bending strength of (Al<sub>2</sub>O<sub>3</sub>-10 vol % Cr<sub>2</sub>O<sub>3</sub>)-10 vol % ZrO<sub>2</sub> composite was 556 MPa.

# 4. Discussion

As  $Al_2O_3$  is the main component in  $Al_2O_3$ - $Cr_2O_3$ -ZrO<sub>2</sub> composites, its properties influence the properties of the body as a whole. It is especially important to inhibit grain growth and to distribute fine grains

![](_page_2_Figure_11.jpeg)

Figure 4 Monoclinic phase ratio of  $ZrO_2$  in  $(Al_2O_3-Cr_2O_3)-10$  vol %  $ZrO_2$  composites obtained by X-ray diffraction.

![](_page_3_Figure_0.jpeg)

Figure 5 Lattice constants of  $Al_2O_3$  in  $(Al_2O_3-Cr_2O_3)-10$  vol % ZrO<sub>2</sub> composites.

homogeneously. From observation of the microstructure in Fig. 1 it is indicated that  $ZrO_2$  is very effective in inhibiting grain growth of the  $Al_2O_3-Cr_2O_3$  matrix. Therefore, addition of small amounts of Cr2O3 is effective as a grain growth inhibitor; however, it is not effective in these compositions. On the other hand, Lange and Hirlinger [11] investigated the relationship between the amount of ZrO<sub>2</sub> and grain growth in Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> composites. In his results, although ZrO<sub>2</sub> is present as less than 5 vol %, it does not contribute as a grain growth inhibitor for Al<sub>2</sub>O<sub>3</sub>, and abnormal grain growth is also observed. More than 5 vol %  $ZrO_2$  does inhibit grain growth. It is important for ZrO<sub>2</sub> to be in the four-grain junctions of Al<sub>2</sub>O<sub>3</sub> grains in order to produce a fine microstructure. In the present compositions, ZrO<sub>2</sub> inhibits the grain growth of

![](_page_3_Figure_3.jpeg)

Figure 6 Vickers hardness of  $(Al_2O_3-Cr_2O_3)-10 \text{ vol }\% \text{ ZrO}_2 \text{ composites.}$ 

![](_page_3_Figure_5.jpeg)

Figure 7 Fracture toughness of  $(Al_2O_3-Cr_2O_3)-10 \text{ vol }\%$  ZrO<sub>2</sub> composites.

 $Al_2O_3-Cr_2O_3$ , as shown in Fig. 1 because more than 5 vol % ZrO<sub>2</sub> is present in the  $Al_2O_3-Cr_2O_3-ZrO_2$ composite. However, in part of the heterogeneous distribution of ZrO<sub>2</sub> grains, an abnormal grain growth of  $Al_2O_3-Cr_2O_3$  was observed, as shown in Fig. 8. This phenomenon suggests that the homogeneous distribution of ZrO<sub>2</sub> is an important factor.

The grain size of  $ZrO_2$  changes with its amount in the composite and it enlarges with increasing amount of  $ZrO_2$  as shown in Fig. 2. It was observed that  $ZrO_2$ grains, which existed between  $Al_2O_3$  grains, grew and jointed with their neighbours and then each became a large grain. It is thought the reason that the influence of  $Al_2O_3-Cr_2O_3$  grains on  $ZrO_2$  grains becomes less with increasing amount of  $ZrO_2$  in the  $Al_2O_3-Cr_2O_3 ZrO_2$  composite is that there is a reciprocal action between  $Al_2O_3-Cr_2O_3$  grains and  $ZrO_2$  grains. Green also reported this phenomenon in ZTA [12].

It is obvious that  $Al_2O_3$  forms a solid solution with  $Cr_2O_3$  in  $Al_2O_3-Cr_2O_3-ZrO_2$  composite as shown in Fig. 5. Rossi and Lawrence [13] also measured the

![](_page_3_Picture_10.jpeg)

Figure 8 Scanning electron micrograph of the luck area of  $ZrO_2$  in  $(Al_2O_3-10 \text{ wt }\% Cr_2O_3)-10 \text{ vol }\% ZrO_2$  composite.

![](_page_4_Figure_0.jpeg)

Figure 9 X-ray diffraction patterns of (Al<sub>2</sub>O<sub>3</sub>-10 wt % Cr<sub>2</sub>O<sub>3</sub>)-10 vol % ZrO<sub>2</sub> composite after the bending test.

lattice constant of Al<sub>2</sub>O<sub>3</sub> with  $Cr_2O_3$  and confirmed the solid solution as Al<sub>2</sub>O<sub>3</sub>- $Cr_2O_3$ . On the other hand, Jayaratna *et al.* [14] reported that the solubility of  $Cr_2O_3$  in ZrO<sub>2</sub> was 0.7 mol % at 1450° C. Therefore,  $Cr_2O_3$  may also slightly dissolve in ZrO<sub>2</sub> in Al<sub>2</sub>O<sub>3</sub>- $Cr_2O_3$ -ZrO<sub>2</sub> composite.

Bradt [6] concluded that the hardness of  $Al_2O_3$ -Cr<sub>2</sub>O<sub>3</sub> composite increased with increasing Cr<sub>2</sub>O<sub>3</sub> content. Ghate *et al.* [15] also measured the hardness of  $Al_2O_3$ -Cr<sub>2</sub>O<sub>3</sub> composites and concluded that the maximum hardness was at 10 mol % Cr<sub>2</sub>O<sub>3</sub>. This result is similar to that in Fig. 6. In any case, the addition of Cr<sub>2</sub>O<sub>3</sub> to  $Al_2O_3$  is effective in improving the mechanical properties and it was surmised that solid solution hardening might be a grain-boundary effect.

It is known that partially stabilized ZrO<sub>2</sub> has a stress-induced transformation from tetragonal to monoclinic phase which improves the properties of fracture toughness and strength by a volume change of  $ZrO_2$ . Tetragonal  $ZrO_2$  exists in our specimens, so it is presumed that this transformation occurs to strengthen and improve fracture toughness in the  $Al_2O_3 - Cr_2O_3 - ZrO_2$  composite. Besides, although the tetragonal phase decreased with increasing Cr<sub>2</sub>O<sub>3</sub> content, fracture toughness increased. It is considered that microcracks, which were produced on transformation of tetragonal to monoclinic ZrO<sub>2</sub> in the sintering process, exist in the specimens and thus may also contribute to high fracture toughness. The ZrO<sub>2</sub> phases of the specimen after the bending test were identified by X-ray diffraction as shown in Fig. 9. It was certified that the stress-induced transformation proceeded on the fracture surface. In addition, the transformation on the tensile (lower) surface proceeded more than on the compressive (upper) surface. It is thus assumed that the constraint force of the  $Al_2O_3$  –  $Cr_2O_3$  matrix against the  $ZrO_2$  grains was released by the tensile stress [16].

#### 5. Conclusions

1. The addition of  $ZrO_2$  inhibited the grain growth of  $Al_2O_3$ - $Cr_2O_3$  and the grain growth of  $ZrO_2$  proceeded with increasing amount of  $ZrO_2$  in the  $Al_2O_3$ - $ZrO_2$  composite. No compounds other than  $Al_2O_3$ ,  $Cr_2O_3$  and  $ZrO_2$  were found in the  $Al_2O_3$ - $Cr_2O_3$ - $ZrO_2$ composite using ESCA measurement. 2. The formation of a solid solution of  $Al_2O_3$ -Cr<sub>2</sub>O<sub>3</sub> was confirmed by measuring the lattice constants of  $Al_2O_3$ , and the monoclinic phase of ZrO<sub>2</sub> in  $Al_2O_3$ -Cr<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> composite increased with the addition of Cr<sub>2</sub>O<sub>3</sub>.

3. The hardness was maximum at the composition of  $Al_2O_3-10$  wt %  $Cr_2O_3$  and the fracture toughness increased with increasing amount of  $Cr_2O_3$  in the  $Al_2O_3-Cr_2O_3-10$  vol %  $ZrO_2$  composites.

4. The stress-induced transformation in  $Al_2O_3$ - $Cr_2O_3$ - $ZrO_2$  composite was confirmed on the fracture surface of the specimen after the bending test by XRD and that it proceeded more on the tensile surface than on the compressive surface.

#### References

- 1. E. M. LEVIN and H. F. McMURDIE, "Phase Diagrams for Ceramists" (American Ceramic Society, Columbus, 1975).
- R. C. GARVIE, R. H. HANNINK and R. T. PASCOE, *Nature* 258 (1975) 703.
- 3. F. F. LANGE and D. J. GREEN, "Advances in Ceramics", Vol. 3 (American Ceramic Society, Columbus, 1981) pp. 217-25.
- 4. F. F. LANGE and M. M. HIRLINGER, J. Amer. Ceram. Soc. 67 (1984) 164.
- 5. N. CLAUSSEN, ibid. 59 (1976) 49.
- 6. R. C. BRADT, ibid. 50 (1967) 54.
- 7. R. C. GARVIE and P. S. NICHOLSON, *ibid.* 55 (1972) 303.
- R. A. MILLER, J. L. SMIALEK and R. G. GAR-LICK, "Advances in Ceramics", Vol. 3 (American Ceramic Society, Columbus, 1981) pp. 241-53.
- 9. K. NIIHARA, Ceramics 20 (1985) 12.
- 10. B. D. CULLITY, "Elements of X-ray Diffraction" (Addison-Wesley, Reading, 1956).
- 11. F. F. LANGE and M. M. HIRLINGER, J. Amer. Ceram. Soc. 67 (1984) 164.
- 12. D. J. GREEN, ibid. 65 (1982) 610.
- 13. L. R. ROSSI and W. G. LAWRENCE, *ibid.* **53** (1970) 604.
- 14. M. JAYARATNA, M. YOSHIMURA and S. SOMIYA, J. Mater. Sci. 21 (1986) 591.
- B. B. GHATE, W. C. SMITH, C. H. KIM, D. P. H. HASSELMAN and G. E. KANE, *Ceram. Bull.* 54 (1975) 210.
- 16. T. ARAHORI, N. IWAMOTO and N. UMESAKI, J. Ceram. Soc. Jpn 94 (1986) 742.

Received 27 April and accepted 6 July 1987